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SUMMARY 

The calculation of the higher central moments of chromatographic peaks has 
been a long-time burden of the chromatographer. The calculation of these quantities 
experimentally is not often accomplished since the integration process is extremely 
sensitive to noise and the limits of integration, causing the results to vary over a large 
range. Owing to these discrepancies, the purpose of this work was to derive the mo- 
ments of the predetermined eight-parameter peak shape model of Chesler and Cram 
after fitting the equation to experimental data, and to ofher a comparison of the results 
to the direct integration of the profile. In some cases, the experimental moments are 
in close agreement with those predicted by the model, whereas in others the difference 
is auite substantial. 

lNTRODUCiTON 

The importance of statistical moments in the analysis of chromato_maphic peak 
shapes is well established1-3. In addition to the characterization of solute peaks, the 
moments can yield information pertaining to processes occurring in the chromato- 
graphic column. Consequently, the moments can be used to identify the solutes on one 
hand and to obtain physicochemiil parameters, such as rates of&sorption, on the 
other. The utilization of moments has been hampered by the fact that they are diffi- 
cult to measure experimentally. With the exception of the data of very few workers, 
viz. Oberholtzer and Rogers4 and Petitclerc and Guiochons, the reported values of the 
moments sufher from lack of accuracy and precision. Chesler and Cram6 as well as 
Petitclerc and Guiochon’ have shown the dependence of the measured moments on 
experimental variables such as the signal-to-noise ratio, digitizing rate, limits of in- 
tegrations, etc. Since higher central moments, such as the third and fourth, tend to 
accentuate the contribution of points furtheE’ away from the center of gravity (first 
moment) of the peak, any baseline noise will contribute significantly to the inaccuracy 
of the measurements. 

The calculation of the second central moment, which is crucial to the evalua- 

l For Part I see ref. 27. 
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tion of a chromatographic system, poses few problems in its calculation, provided the 
peak is not too broad and is reasonably symmetric. Stemberg discusses the various 
operating parameters that can contribute to the broadening of the zone, many of 
which am be controlled experimentally. If there is a large modification of the second 
moment by extra-column effects, the fourth moment which is used to calculate the 
excess of the profile, maguifies these effects which will not accurately describe the on- 
column processes. This is particularly important in determining the kinetic interactions 
between the solute and mobile phase (for diffusion studies) or stationa phase3. 

The moments of chromatographic profiles have been related to the mass 
balance equations2*9-‘5. Yamaoka and Nakagawai6 have shown the effect oi the 
sample size on the moments. A detailed description of the moments have been report- 
ed in numerous works17-Z* and will be omitted here. 

Aside from the physical phenomena to which the moments are related, the 
moments can also be used to approximate the peak shape using the Gram-Charlier 
se)-jes'2.23.24. 

The coefficients of the terms in the series are functions of the higher order 
cent& moments. For example, the Gram-Charlier series was used by McQuarrie= 
to compare the peak shape generated with a Bessel function, whose derivation was 
based on the stochastic theory. In the work described here, the series was evaluated 
with the moments calculated from the model of Chesler and Cramz6. 

Since the moments reflect the processes that occur in the column, they should 
be useful in characterizing the solutes and the stationary phase. More specifically, the 
moments should yield qualitative information about the solutes, thus allowing their 
identification. The moments should also be able to classify the “polarity” of the sta- 
tionary phase. The present paper deals only with the solute identification. 

Since routinely used gas chromatographs do not allow direct precise calcula- 
tions of the moments, an alternative method is needed. If a mathematical model that 
describes the peak shape exists, then this model can be fitted to the experimental 

-data and the moments calculated from the fitted equation. In a previous paper*’ we 
have described an eight-parameter equation suggested by Chesler and Cramz6 and we 
have shown that the equation can be utilized to evaluate chromatographic data. Here 
we describe the calculation of the moments from experimental data by the use of the 
Chesler and Cramz6 model. 

. . 
EXPERIMENTAL 

The data were collected as described previously28. The calm was 200 cm in 
length and 0.64 cm 0-D. and packed with 10 % Carbowax 1540 on Chromosorb W 
AW DMCS, SO-1OQ mesh. Preliminary data reduction from previous workz7 was 
done on a CDC 6400 computer while the moments calclllations were run on a CDC 
cyber 173. 

THEORY 

The eight-parameter equation of Chesler and Cram* was the model whose 
moments were investigated_ The equation is of the form: 



CHROMATOGRAPHIC PEAK SHAPE. II. 307 

Y(t) = 
-Ct - c,)L 

qexp [ 2c5 I c 
+ 1 - OS{1 - mrNC& - C,)B} x 

x C, exp C-0.5C, ([t - Csl f 2 - C8)1} (1) 

where --_ = peak maximum; C, = slope of the hyperbolic tangent at r=C,; C, = 
midpoint of She hyperbolic tangent; Ci = position of the peak maximum; C, = vari- 
ance of the Gaussian portion of the peak; C, = height ratio of the maximum of the 
exponential decay to C, at t=Cs; C, = rate of the exponential decay; and C, = posi- 
tion where the decay function originates. 

The first term in eqn. i is the Gaussian contribution, the second term is the 
hyperbolic taugent function which is used to broaden, as well as to intioduce smooth- 
ly the last term, a*1 exponential decay. Various properties of this function have been 
discussed previousiy2’ and will therefore be omitted for the purpose of brevity. 

Statistical moments of a population profile are defined as: 

m, = - 
m --m I +=t”f(t)drn = 1,2,3,. _ _ 

(2) 

(3) 

Eqn. 2 yields the area of the profile while eqn. 3 provides the noncentral higher 
moments. Usually one is only concerned with the moments calculated about the 
center of gravity of the distribution, m,, since it is the central moments that contain 
the specific information concerning the peak shape and the physical properties of the 
solute zone. 

The integration of f(t) may not be straightforward. In such cases the Laplace 
transform of f(t), L[f(r)], can be used to generate the moments: 

(4) 

where s is the Laplace variable, 
It is important to bear iu mind that eqn. 4 does not yield the central moments. 

The central moments, pm, are calculated using the following set of equations: 

PCt =m, -ml2 (5) 

fi = m3 - 3mIm2 -I- 2m13 (6) 

p4 = m4 - 4m,m3 + 6m12m2 ‘;- 3rnIa (7) 

Cc5 = m5 - 5m,m, -I- 10m12m, - 10mL3m2 + 4mIs 09 

As mentioned, the moments oi a chromatographic peak are important since 
they contain inform&ion regarding the chromatographic system. For example, a 
negative third central moment reflects a fronting peak which can be frequently cor- 
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rected by the injection of a smaller amount of solut&. Conversely, a large positive third 
azntral moment is indicative of a tailing peak, where extra-cohunn effects -or adsorP_ 
tion-desorption kinetics may be responsible. The deviation from a Gaussian profile is 
readily seen in the higher moments and their derived quantities skew and excess. These 
quantities are calculated from the central moments by 

skew = P3 
3/2 
P2 

P4 excess = z -3 
Pt 

WV 

The values of skew and excess for a Gaussian profile are zero. When these 
qua& ies vary drastically from their Gaussian values, in either direction, the chroma- 
tographic system may have to be changed to increase the efficiency of the system. 

The application of the higher moments is useful when one is comparing the 
experimental profile to that of the theoretical Gram-Charlier series. The series is of 
the form 

where g(t) = exp[-(t - m,)2/2pz], Hi = ith Hermite polynomial, and C, = coeffi 
cients of the ith Hermite polynominal. 

The coeffibients of the Hermite polynomials are functions of the moments of 
the profile. It is obvious that for a Gaussian profile the coefficients C, are zero. Also, as 
a peak departs from a Gaussian profile, more terms are needed in the series of eqn. 11 
to describe that profile. With the higher moments being more sensitive to any asym- 
metry present, the number of terms needed in the Gram-Charlier series for a relatively 
accurate description of the experimental data are not known. 

The integration of eqn. 1 is by no means trivial, and a clcsed form solution may 
not be attainable. The first term of the equation can be integrated directly to obtain 
the moments of the Gaussian portion. The remaining terms must be treated in such a 
way as to introduce as small an error as possible since they cannot be integrated in 
closed form in the real plane. Considering the hyperbolic tangent joining function and 
the exponential decay function, their product is defined over two intervals in 
plane : 

9 

f1(t) = q I1 + tanh C2Q - C,)] t < cl3 (12) 

f2(t) = +- El + tad G(f - c,)l exp 1-G (t - GM t > c, (13) 

The integrals for each portion can be expressed as: 
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Eqn. 14 can be reammged to allow the evaluation of a proper definite integral 
of the form: 

where k, = exp[C,(C, - C,)] and U, = exp[;(t - C,)]. The area contribution of 
this portion of the peak can be obtained directly: 

m,=$+l(l + exp PCACs - G)D 
2 

The remaining moments cannot be calculated as central moments, since fX(t) and 
f&) both contribute to the center of gravity of the peak. The remaining moments of 
fr(t), expressed in terms of U, are: 

GC6 
m, = - 

1 Ul 

cz 0 21; + 1 [ &lnu, + Cl’du, n L 1,2, - - . 

For computational purposes, for all solutes used in this study, the lower limit 
of integration can be changed from 0 to e- czcs_ This change of limits is a result of the 
following integral that was evaiuated for each solute: 

clc6 

2 --m s 
’ [l f tar& C& - C,)] dt = 0 (19) 

This can be verified by the fact that the integrand, evaluated at both its upper and lower 
limits has a value of zero, provided that C, is sufficiently large. From the limitations 
imposed upon this model, the integral in eqn. 19 should be valid for all solutes since 
t = 0 is taken to be the time of injection. 

The expression for the integral in eqn. 1s cannot be evaluated in closed form 
nor can a set of series with a reasonable number of terms be used to approximate it, 
the remaining alternative being the numerical Simpson’s rule. If the intervals are 
taken to be smali enough, the error can be controlled, and with the aid of a computer, 
the time used for such a calculation is bearly significant. 

The fast ‘integral of interest is eqn. 15. In f&s case, it is the number of argu- 
ments of the exponential that Iimit its evaluation. Taking the Laplace transform of 
eqn. 15 and changing variables: 

f-c7+s \ 

. ,L[f&)J = $& exp [C,(C, - C3)] exp (-SC,) J’z 
U, \.,I 

drc, (20) 
0 u2 -t- 1 

where k2 = expl- 2C2(Cs - C,)] and U, = expt- 2C2(t - C,ll. 
In the present study the values of the upper limit of integration, k2, depending 

upon the solute, ranged from 0.1 to 9.3. For the cases when k -C 0.5, d series expan- 
sion of l/l-f-~~ was used, and the integral then evaluated term by term. Since the 
center of convergence is zero and the radius is [u2[ c 1, various series are needed for 
the cases when k exceeds 0.5. For this purpose, nine series, each with a different center 
and radius of convagence were employed. The integral was now of the form: ’ 
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L[f&)J = s exp E(Cs - GWsc3 
i 

ll/L 

4 
(Y2TrGys du 

0 2 2 

i 

C,+S 
-1 

C,+S 
_---1 

+ J-=2 u2 \ 2cz 

) 

s, du2 + --- + 

k’( ) 2Cz 

2n-1 

2-i2u2 - Sndu2 1 

(21) 

where the nth term is determined whenever the following condition is fulfilled: 
2n--l/2 < k2 < 2nf I/2; S,, is the Taylor series expansion of I/u,+ 1 around center 
n. The integration of the successive series is continued until k2 is delined between the 
lower and upper limits of integration, at which point the upper limit becomes k2. 

The noncentral moments for the entire peak, i.e. the Gaussian portion, join- 

ing function and decay function were calculated and their sum was used to generate 
the central moments, using eqns. 5-8. 

RESULTS AND DISCUSSION 

Compar%on of experimental moments to moments calculated from eqn. I 

The moments of chromatographic peaks that are obtained in most labora- 
tories are from the direct integration of digitized data. Unless the chromatographic 
system is carefully designed and handled, and the data smoothed, these numerical 
moments may vary drastically_ Table I gives the values of the first and second central 
moments and the skew and excess that were calculated from the digitized data and 
those calculated from the integration of the fitted peak shape model. The average 
values of CZ - Cs for each solute can bc found in our earlier publication”. For the 

majority of solutes investigated, the moments calculated from the model involved a 
smaller error than the moments obtained directly from the normalized digitized data. 
Since skew and excess are directly proportional to pa and p4, respectively, and are 
much more sensitive to peak shape variations, a large relative error in the precision is 
expected. This is observed in both cases of experimental and calculated moments. The 
relative error is much less for the moments obtained from the fitting equation and may 
be as much as 15 times smaller than obtained directly from digitized data. 

The large relative error for the skew and excess for mesityiene calculated from 
the model was due to a considerable variation in the upper limit of integration. For 
one particular peak the value of this constant was 7.0, while the remaining peaks 

grouped around 8.2. The values for skew and excess with relative errors, for the set of 
mesitylene peaks neglecting the above mentioned peak are 0435 (f3.76) and 1.368 
(f7.39, respectively. Since the constant is an exponential function of C,, C, and C,, 
any variations in the fitted values will be Seen in the moments more readily than in 
the fit of the equation itself. 

It must be mentioned that the moments-in Table I were calculated using the 
fitted values from Chesler and Cram’s equation for individual peaks and not from the 
average values previously reported (Table IL in ref. 27). 

The va!ues of the first moment calculated from the actual experimental data 
and from the model are in close agreement. Large variations between the experimental 
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TABLE I 

VALUES OF THE MOMENTS OF EXPERIMENTAL PEAKS COMPARED TO VALUES OBTAINED 
FROM FITTED PEAKS 
Values in parentheses are percent relative errors. 

compomd tn, ml I% cd2 Skew Skew ficess Excess 

texpt-1 (modeI) (eA-pr.) (model) texpr.) (model) (expr.) (model) 

n-Hexane 

n-Heptane 

n-Octane 

Benzene 

p-Xylene 

Mesitylene 

Ethanol 

Propanol 

n-Bu’ZmoI 

26.94 26.91 l 
iO.005 10.003 

(&O-019) (zkO.011) 
26.91** 

-CO_008 
(f0.030) 

36.34 35.34 
11.16 10.05 

(zt3.19) (dzO.14) 
50.98 50.16 

(1.62 10.03 
&;-;;I czk;s 

*ok io.09 
( *o-07) ( 10.07) 
390.07 389-2 

&O-61 ZkO.09 
(kO.61) (&0.02) 
772.25 772.24 
iO.40 10.50 

(iO.05) (ztO.06) 
136.57 1317.5 
hO.07 rt0.W 

w& tro.03) 

*0:19 
256.25 
AO.12 

( 10.07) ( kO.05) 
520.27 520.43 
&2.60 io.21 

CfO.50) (&Oat) 

0.354 
10.009 

(r2.69) 

0.788 

io.034 
(+z4.31) 

2.62 
f0.20 

( C7.63) 
11.95 

10.10 
(10.84) 

69.76 

io.47 

GO.67) 
214.20 
i.5.66 

(12.64) 
82.03 

i-4-74 
(&5.78) 
263.19 

h21.61 
(f8.21) 
866.14 

136.30 
k4.19) 

0.351* 
&-0.002 

(zkO.570) 
0.364*- 

10.003 
( +0_824) 

0.891 
rtO.008 

(;0.898) 
2.25 

-0.02 
(f0.89) 

11.10 
*o-o3 

cko.27) 
71.64 

*0.94 
(C1.31) 
223.96 
h8.27 

(F3.69) 
21.55 

&OS2 
(f2.41) 
103.73 
13.44 

(93.31) 
719.36 

zk16.79 
(xk2.33) 

0.725 
&O.OSS 

(fl2.1) 

0.584 

F0.028 
(14.79) 

1.76 
f0_46 

(A26.1) 
1.10 

90.72 
(%6X5) 

0.553 
iro.031 

(&5.61) 
0.417 

&0.080 
(f19.18) 

3.15 
0.08 

(i2.54) 
3.26 

10.12 
(zt3.68) 

2.58 
;0.09 

(zk3.49) 

0.679 l 
rto.007 

(11.03) 
0.791** 

&0_013 
ckl.64) 

0.920 
+0_029 

(i3.15) 
1.01 

10.02 
(* 1.98) 

0.711 
*0.004 

(10.563) 
0.614 

10.026 
(14.23) 

0.543 
hO.117 

(521.5) 
1.80 

;0.03 
(f1.67) 

2.55 
&0.04 

(&l-57) 
2.66 

10.02 
(20.75) 

1.541 
ro.410 

kk26.6) 

0.848 
f0.098 

(Fll.6) 
8.585 
4.71 

(+54_9) 
4.66 

&OS4 
(Ztll.6) 

1.34 
20.12 

. t&8.96) 
0.843 

zto.374 
( i44.4) 

11.38 
io.52 

(14.57) 
12.88 

11.06 
(iS.23) 
. S-42 

;0.73 
(58.67) 

- 1.51’ 
50.03 

(i1.99) 
2.00” 

10.05 
(&2.50) 

2.81 
ho.16 

(55.69) 
3.32 

10.10 
(53.01) 

2.12 
io.01 

(&O-47) 
1.88 

io.12 
(z&6.38) 

1.67 
10.61 

Q36.5) 
6.08 

io.11 
(&l-81) 

11.23 
iO.28 

($2.49) 
10.80 

;0.11 
(rt1.02) 

- C, = 2.72. 
*- c, = 2.17. 

data and the mathematical model start to become noticeable inpz and the other higher 
moments. In order to justify the comparison of the experimental moments, to those 
using the Chesler and Cram model, the experimental profile must be compared with the 
calcuIated profile. Figs. 1 and 2 are two plots which show both the experimental and 
fitted profiles. Fig. 1 is for a typical heptane peak with a @ value (sum of the squares 
of the residuals) of 9.20 x IO+ for fitting the front half of the peak and 2.02 x 10W3 
for fitting the back half. As can be seen, the calculated profile approximates the ex- 
perimental prome very well. A plot of the digitized data and fitted data for propanol is 
given in Fig. 2. In this case, @ = 7.4 x 10~~ for the front portion of the peak and 0.02 
for the back half. The fit is not as good as that for heptane. This is also reflected in the 
p2 vahres shown in Table I. The agreement in the experimental and calculated second 
central moments is much better for heptane than for propanol. The values of the skew 
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.34.1? 35.17 36.17 37.17 36.17 

Fig. 1. Experimental (0) and fitted (- ) data versus time for a typical heptane peak. Fitted 
parametexs: Cz = 1.66, C, = 36.36, Cr = 35.16, Cs = 0.537, Cs = 0.438, C, = 1.20, C., = 35.81. 

for propanol differ by 21% (experimental to model) while the excess calculated from 
the model is 13 % less than the excess calculated from the experimental data. The 
vaiues for heptane differ by approximately 50%. Although the experimental aud cal- 
culated values of the skew and excess may not be in close agreement, the fit of the 
model to the data can be very good. Thus, the moments cannot be used as tool for 
determining the “goodness” of the fit, which is unfortunate. 

Table i shows that the experimentally obtained p2 for the alcohols is much 
higher than the values calculated from eqn. 1. The ieasons for this discrepancy are not 
kIlowILt 

The moments calculated for the hexane peaks were grouped into two categories- 
The reason for this was evident by virtue of the fact that these values cmsespond to 
two distirkt values of C, obtained while fitting eqn_ 1 to experimental data. Original- 
ly, these two sets were classed together, for reasons discussed previously2’. This is neces- 
sary for the purpose of illustrating-the dependence of the moments on the various 
pammeuz&ichv&bedirSSBd~yy, . 

Table I shows that, for a given family, in creasing the number of carbons has a 
consistent effect on the values of the skew calculated via the model. This is not seen 
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Fig. 2. Experimental (- - -) and fitted (- ) data versus tim for a typical propanol peak. Fitted 
parameters: C, = 0.388, C, = 255.85. C, = 252.45, C, = 21.67, Cs = 0.197, C, = 0.0796, C, = 
260.43. 0 

experimentally for the alkanes and alcohols. Considering the excess obtained from 
the model, its value increases for the akmes, d ecreases for the aromatics and propanol 
has the maximum value for the alcohols. From the experimental moments, propanol * 
akohasthe&axim urn value. The variation for excess calculated directly from the data 
for the ailcanes may be due to the fewer number of data points available for these 
solutes compared to those of other families ; whereas the value for propanol cannot be 
explained since the same trend was observed when the excess was calculated from the 
experiment& data. 

Solute t&ntijic~tion by the use of moments 
Fig. 3 is a pfot of skew vet-m excess calculated for each solute from the param- 

eters of eqn. i. The alkanes vary with a positive slope for increasing carbon number. 
white the aromatics correlate with a positive slope for decreasing carbon number. The 
corresponding plot for the dcohols cannot be explained since propanol l&es to the 
right of butanoi_ Also, no correlation is seen in the excess values obtain& from the 
ex_tiW&dy_ . 
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Skew. 

2.5 batanal 
pmpanol 

0 
0 

2.0 

1.5 

1.0 

0.5 

ethznol 

octane 
heptone 0 

hexane,Jb) o 

(010 abenzene 
. op-xylene 

- omasitykne 

I I I I I I I I I I 

2.0 3.0 4.0 50 6.0 7.0 8.0 9.0 I 0.0 I 1.0 

E Xcess 

Fig. 3. Skew wersus excess calculated from the moments of eqn. 1. Tbe two points for bexane represent 
the two sets of data obtaiaed from calculations (see text). Error bars are omitted for simplicity. (a) 
Ct = 2.72, (b) C, = 2.17s 

Die to the reverse correlation of the alkanes and aromatics on the skew 
versus excess plot, skew versus carbon number was plotted. Fig. 4 illustrates the 
differences between these two families. Although the trend of these families is in the 
opposite direction, they lie in a similar region of the plot. The alcohols, which represent 
a polar, homologous series, lie In a region of the plot isolated from the alkanes and 
aromatics. It is intuitively obvious that the reason for the separation of families is a 
result of their molecular interactions with the stationary phase, which is a polar one 
(McReynolds’ constants: x’ = 37 1, y’ = 639, z’ = 453, U’ = 666 and s’ = 641, see 
ref. 29). 

The value of the skew of a concentration profile, as previously mentioned, 
reflects the asymmetry of the peak, thus, as the tailing of the peak increases so does 
the skew. Considering the family of aromatics, the value of the skew decmases with 
increasing carbon number, which is not in accordance with an increase of the first 
moment. This may be indicative of kinetic processes unique to this particular station- 
ary phase-solute system. If this is the case, then the polarity and/or specific family of 
the solute for a given stationary phase may ‘be approximated. For such a study, a 
thorough investigation cannot be attempted with the minimal amount of data avail- 
able at the present time. 

. . 
Eflect of various parameters to the theoretical moments 

The use of the eight-parameter model which does not yield analytical expres- 
sions for the statistical moments implies that a numerical procedure must he used to 
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Fig 4. Skew ver?? carbon number. The values for skew are taken from Table I caiculated via the 
curve fitting model. For the two points representing hexane: (a) C, = 2.72, (b) Cz = 2.17 (see text). 

determine the dependence of the moments on the various constants. To accomplish 
this, a select parameter was varied while all of the remaining parameters were held 
constant for each of the nine solutes. The peak height, C,, was not changed since this 
would only aff& the area and not the higher moments. 

A f 5 % variation in C,, the slope of the hyperbolic tangent at its midpoint, C,, 
shows little change in the values of ml, p2, skew and excess. Changing C, by 10% re- 
sulted in a change close to 2 o? for ml, p2, skew and excess. While C, and CS have little 
effect on the moments, a small variation in C, results in large changes in the magnitude 
of the moments. By increasing C, all of the moments decrease. For example, the second 
central moment for butanol decreases by 16 o/o when increasing C, by 10 %, and in- 
creases by 21% when decreasing C, by 10%. This is an expected result since C,, the 
rate of decay of the exponential, controls the shape of the tail of the peak. For this 
model, C, can be compared to l/r, where t is the time constant of the decay, in the 
exponentially mod&d Gaussian”; as C, (l/t) increases, the tailing of the peak de- 
creases, and so does its width. The moments obtained from the exponentially modified 
Gaussian expressions3q which were fitted to the data, are a good approximation of 
the moments calculated from eqn. 1. This is quite surprising since the exponentially 
modified Gaussian does not fit our peaks as well as eqn. 1. Incidentally, the first 
monient of the peaks can be also approwted from eqn. 1 by C, + l/C, and the 
second moment by C, + (l/C7)2. 

Considering the form of the integrals used to calculate the moments, -both 
from -w to C8 and C, to i-00, the moments are proportional to L/C, and 
l/(C, + I&,), respectively. If the model was composed of a pure exponential decay 
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the moments would be proportional to l/C, (t). Even though a hyperbolic tangent 
function is used to join the Gaussian to the exponential decay, the analogy is still 
valid. Consequently, by altering the height of the decay function, e.g. an increase of 
C,, will correspond to broadening the peak and the tail will become more predominant. 

When C, was varied between - 10 % and + 10 % of its original value for all of 
the alcohols, skew and excess decreased. The variation in the skew was approximately 
2.5 % while for the excess it was closer to 6 %_ The aromatics behaved in a different 
manner since the values of skew and excess increased when increasing C, from - 10 % 
to + 10 %_ For this case, benzene reflected the smallest variation in skew and excess, 
mesitylene had the largest and p-xylene was between these two extremes. Considering 
the last family, the alkanes, no consistent results were observed. Depending upon the 
solute, either skew or excess may decrease. If the change in C, is restricted to + 10 %, 
heptane and octane yield an increase of about 2 % in the skew and 1% decrease in the 
excess. The excess for hexane decreased by 3 % while the skew also decreased but was 
considerably less (CQ. 0.5 “/o). 

The next parameter investigated was C,. An attempt was made to vary C, by 
1% but due to the nature of the model and its moments, C, as well as C,, could not be 
changed independent of the other. Referring to eqn. 21, the moments for the backhalf 
of the peak are related to C, and C, exponentially. A reevaluation of the data showed 
for the majority of experimental peaks as C’, increased, so did C8 and vice verse. It was 
then decided that these two parameters must be changed simultaneously in the same 
direction approximating the experimental variations as ciose as possible. 

The alkanes all gave an increase in the value of skew when C, and C, were 
changed & 5%. Heptane and octane showed an increase in their values for excess 
while a maximum around -2% occurred for hexane. The values for skew and excess 
increased for all of the aromatics. A maximum was observed near a -4% change in 
C’, and C8 of the skew for all of the alcohols. Propanol and butanol behaved in a 
similar manner since their values of excess steadily decreased. Ethanol was the unique 
member in this family_ 

Fig. 5 shows a plot of skew and excess versus a 1% change in C, and C, simul- 
taneously- for ethanol. In this case, both skew and excess have a maximum around 
-4 %. It is important to mention that as C, and C, increase, p2 increases. This is due 
to the movement of the product of the joining and decay factions simultaneously 
along the time axis in the positive time direction, which results in broadening the peak. 

_ The 1% changes in C, and C, were close approximations to what was observed ex- 
perimentally. Also, since the difference between C, and C, is au exponential function, 
these parameters had to be varied in such a way that their difference was reIatively 
constant. 

The m&mum in the skew versus C, and C, plot is due to the fact that the 
third moment initially increases faster than ,u~‘+. This is also the case for the excess 
with respect to pa_ For this plot it is evident that a 1 o/0 change in C, and Cs caa cause 
vastly different vaiues of the moments for ethanol. This was also observed experimen- 
tally. For the experimental ethanol peak, the second moment was the largest for the 
largest values of C3 and C,. If one desires to use the curve fitting technique to obtain 
the constants of eqn. 1, care must be taken so that the variations in the parameters 
from peak to peak are kept minimal. 



CI-IROMATOGRAPHIC PEAK SHAPE. IL. 317 
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Fig. 5. Skew (- - -) and excess ( -) for ethanol wrsus percent change in C3 and Ca simulta- 
neously. Original values of parameters: C, = 134.43, C. = 137.20. 

Cotqmrison of the Chesler and Cram equation to the Gram-Charlier series 

The Gram-Charlier series, whose coefficients are functions of the central 
moments of a concentration profile is commonIy used with only the first two terms of 
the summation in eqn. 1 1 _ The first two terms are proportional to the skew and excess. 
If the next term in the series is generated, it is a function of ps and the skew. In the 
limiting form of the series when the skew and excess are zero (along with the remaining 
coefficients of the higher terms in the series) only one term, the Gaussian, remains. 

A major problem with using the Gram-CharIier series is that at the extremes 
of the peak there tend to be oscillations. This is illustrated in Fig. 6a for ethanol. The 
moments used to generate the Gram-CharIier series were taken from the integration 
of eqn. 1. The height of the simulated peak from eqn. 1, C, was taken to be unity. The 
peaks generated via the Gram-Charlier series were not normalized to unit height. By 
avoiding the normalization of the peak height, the oscillations at the beginning and 
end of the profile appear more pronounced. Also, it is easier to detect the shift in the 
maximum of the peaks. The time scale used is relative to C, in eqn. 1. 

The peak corresponding to the Gram-Charlier series of three terms in Fig. 6a is 
much less distorted than the peak calculated using four terms. of the series. The next 
term in the series whose Hermite polynomial wili be a function of the odd powers of 
t--m,/dpz will probably reduce the oscillating at the beginning of the peak consider- 
ably; what will happen at the tail of the peak is not known since the sixth central 
moment, p6, was not calculated. 

Fig. 6b is a set of probes for mesitylene. It is important to mention that the 
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Fig. 6. (a) Various &ak &a_pe models for ethanol. (1) Calculated via Cram model Cz = 0.739, Cs = 
134.43, C‘ = 13265, C, = 5.48, Cg = 0.334, C, = 0.209, Cs = 13720; (2) Gram-Char&r series 
using three terms, values of the moments, skew and excess are given in Table I calculated from the 
theoretical model; (3) Gram-Cbarlier series using four terms, ,ua = 9.60 x 10’ f 7.57 x 10’ calcu- 
lated from theoretical model of Chesler and Cram. (b) Various peak shah models for mesit&ne. 
(1) Cram equation-c+ = 0.0892, C, = 792.45, C, = 770.40, C, = 171.66, Cs = 0.376, C,. 5. 0.0818, 
C, 7 780.56; (2) Gram-Charlier series using threz terms, values of moments taken from Table I 
&lculhd from the tlxoretkal model; (3) Gram-ChYfier seriks usi& four terms, ps = 9.4% X 
l@ & 4.67 x 106, calculated from the theoretical model of Chesler and Cram. 
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oscillating at the extremes of the peak is not as prominant as it is for et 1:a no 1 The 
excess for mesitylexie is 1.67 while for ethanolit is 6.08. As the excess of the p~rk.in- 

creases, the tendency to oscillate at the extremes increases. This was also r, o red in the 
work of Grubne9’ using the series with the three terms. There-is also a shiftin_the 
maximum of the peak toward higher values as the excess increases. The plots in Fig. 6 
show the profiles simulated from -30 to 4-7~. In previous workXm31 with this equa- 
tion the data -was plotted to +3o, and it is beyond this region that the oscillations 
occur. On the other hand, the peak generated by the equation of Chesler and CranP 
remains smooth. The oscillations and the need for the higher moments, which are 
sensitive to noise, make the Gram-Charlier series an undesirable peak shape model. 

In general, the use of a curve-fitting model will generate a more consistent set 
of moments than the calculation of the moments directly from the chromatogram. The 
limiting factor in this approach is how well the model approximates the experimental 
peak. For this work the Gram-Charlier series is not a reliable model nor is the ex- 
ponentially modified Gaussian. 

The use of statistical moments from a chromatographic profile can b& a viable 
aid in the identification analysis of an unknown solute. For example, two compounds 
with values of skew and/or excess that are in close resemblance can be identified by 
coupling these quantities with the first moment, and the converse holds. Since the 
moments reff ect column processes, they may become valuable in the use of character- 
izing stationary phases. via the skew. 
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